
Roll a Story
BY BIANCA RIVERA / Programming / October 2020 Issue

Get ready to roll the dice with this fun programming exercise!

At some point in school you may have played a writing “game” in English

class called Roll a Story. If you’ve never played it, it goes like this: a student

takes two dice and rolls to have a short story genre and story elements

(characters, setting and plot) selected. The student then writes an often

outlandish and creative narrative story based on the selections “made” by the

dice.

In this case, we are going to create a Python program that allows users to

get randomly selected genres (either Mystery or Horror) and story elements

to create their own mysterious or spooky story.

First, we need a place to host our program. Programmers can use the free

site Repl.it to develop and host their programs and webpages right from

their browser. Repl.it works on most operating systems and devices (even a

cell phone!). Repl.it provides access to over 50 languages including the most

popular ones such as JavaScript, Python (with Turtle), and HTML/CSS/JS.



Programs in Repl.it are called “repls”. You can create as many repls as you

want and they can be shared with others. Other users can view and run

programs as well as “fork” your program. Forking makes a copy that they can

edit (without editing yours). You can even collaborate on a program with

others in real-time.

Your repls will have an editor (where you type your code) and a console

(where you see the output). You can type your code in one file or in multiple

files. Repl.it auto-saves your work so you never lose your code! You can

even see and restore your code history. All of these features are free!

Let’s start by creating a new account in Repl.it (or sign into your current

one). Once you are signed in, paste the URL of my repl, “Roll a Story”

program (linked below in “See More”). Hit enter and type your own name

after the first hashtag in the file (you’ll see my name – #Bianca Rivera –

replace it with your name). This will fork a copy and provide you a copy of

the “Roll a Story” program. You can click on the pencil icon to rename the

program and provide a description if you’d like.

Your screen will display the IDE (Integrated Development Environment)

where you will see the program file, editor and console side by side. Your

first file will be named main,py by default (the main.py file name doesn’t

change). This particular Python program randomly rolls “dice” to pick story

elements (character, setting and plot) from the Mystery or Horror genre.



If you look at the repl code, there’s a lot going on but we will break it apart.

Keep in mind there is plenty in this program you can edit to “make it your

own” but some of this must stay as-is in order for the program to work.

Here’s the code. There’s a description below so be sure to scroll down. Or

have your repl in one web browser window and this article in another as you

read the description of how the code works.

1 #Bianca Rivera
2 #Roll a Story Creator
3  
4 #import Python's Random and Time modules - do not edit
5 import random
6 import time
7  
8 #sets the number variables to None/null so the user gets new selections

when they replay the game - do not edit
9 genreNum = None
10 charNum = None
11 setNum = None
12 plotNum = None
13  
14 #welcomes the player to the game and stores their name in the name

variable
15 def wel():
16   global name
17   #only the words within the quotation marks in the print statements can

be edited
18   print("Welcome to the Roll a Story creator where a magic number

generator helps you pick story elements to craft your tale!")
19   print()
20   name = input("What's your name, fair writer? ")
21   print("{}, that is a lovely name!".format(name))
22  
23 #code that randomly selects a genre
24 def genre_roll():
25   global genreNum
26   global genreType
27   genreNum = (random.randrange(1,3))
28  
29   #genre dictionary
30   #only edit the name of the genre within quotation marks
31   genreSwitcher={
32     1: "MYSTERY",
33     2: "HORROR"
34   }
35  
36   genreType = genreSwitcher.get(genreNum, "invalid")
37  
38   #tells user their selections



39  
40 #pauses the program, gives the illusion of counting and pausing
41 #only edit the seconds found in parentheses
42 def count():
43   time.sleep(1)
44   print("3...*working*")
45   time.sleep(1)
46   print("2...*calculating*")
47   time.sleep(1)
48   print("1 - generated!")
49   time.sleep(2)
50    
51 #tells the player which genre they will be writing about
52 def gen(): 
53   print()
54   print("Let's summon the magic number generator to help you pick a genre

for your story!")
55   count()
56   print()
57   print("The number generator picked a {}, which means you'll be writing

about a story from the {} genre!".format(genreNum, genreType))
58   if genreNum == 1:
59     mys_roll()
60   else:
61     hor_roll()
62  
63 #for Mystery Genre roll
64 #only edit the words found in the print statements between the quotation

marks
65 def mys_roll():
66   global charType
67   global setType
68   global plotType
69  
70   global charNum
71   global setNum
72   global plotNum
73  
74   charNum = (random.randrange(1,4))
75   setNum = (random.randrange(1,4))
76   plotNum = (random.randrange(1,4))
77  
78   #character dictionary
79   charSwitcher={
80     1: 'THIEF',
81     2: 'DETECTIVE',
82     3: 'FBI AGENT'
83   }
84  
85   charType = charSwitcher.get(charNum, "invalid")
86  
87   #setting dictionary
88   setSwitcher={
89     1: 'A MUSEUM AT NIGHT',
90     2: 'THE HIGHSCHOOL',
91     3: 'AREA 51'
92   }



93  
94   setType = setSwitcher.get(setNum, "invalid")
95  
96   #plot dictionary
97   plotSwitcher={
98     1: 'A PRICELESS JEWEL IS STOLEN',
99     2: 'THE PRINCIPAL GOES MISSING',
100     3: 'UNEXPLAINED PHENOMENA TAKING PLACE'
101   }
102  
103   plotType = plotSwitcher.get(plotNum, "invalid")
104  
105 #for Horror Genre roll
106 #only edit the words found in the print statements between the quotation

marks
107 def hor_roll():
108   global charType
109   global setType
110   global plotType
111  
112   global charNum
113   global setNum
114   global plotNum
115  
116   charNum = (random.randrange(1,4))
117   setNum = (random.randrange(1,4))
118   plotNum = (random.randrange(1,4))
119  
120   #character dictionary
121   charSwitcher={
122     1: 'GHOST',
123     2: 'VAMPIRE',
124     3: 'WITCH'
125   }
126  
127   charType = charSwitcher.get(charNum, "invalid")
128  
129   #setting dictionary
130   setSwitcher={
131     1: 'A CEMETARY',
132     2: 'NEW ORLEANS',
133     3: 'THE DEEP, DARK WOODS'
134   }
135  
136   setType = setSwitcher.get(setNum, "invalid")
137  
138   #plot dictionary
139   plotSwitcher={
140     1: 'SPOOKY SOUNDS BEING HEARD',
141     2: 'EERIE SIGHTINGS TAKING PLACE',
142     3: 'A DEEP CHILL BEING FELT'
143   }
144  
145   plotType = plotSwitcher.get(plotNum, "invalid")
146  
147 #tells user their selections
148 #only edit the words found in the print statements between the quotation



marks
149 def parts(): 
150   print()
151   print("Let's summon the magic number generator to help you pick a

character for your story!")
152   count()
153   print()
154   print("The number generator picked a {}, which means you'll be writing

about a {}!".format(charNum, charType))
155   time.sleep(2)
156   print()
157   print("Next, the magic number generator will pick a setting for you!")
158   count()
159   print()
160   print("The number generator picked a {}, which means your setting will

take place in {}!".format(setNum, setType))
161   time.sleep(2)
162   print()
163   print("Last, the magic number generator will pick a plot for you!")
164   count()
165   print()
166   print("The number generator picked a {}, which means the plot is based

on {}!".format(plotNum, plotType))
167   time.sleep(2)
168   print()
169   print("Lucky you, {}! You get to write a story from the {} genre,

featuring a {}, set in {} based on the plot of {}!".format(name,
genreType, charType, setType, plotType))

170   print()
171  
172 #calls the four functions needed to tell the story
173 #do not edit
174 wel()
175 genre_roll()
176 gen()
177 parts()
178  
179 #asks if user wants to play again
180 #do not edit
181 play_again = 'y'
182 while True:
183   play_again = input("Would you like to use Roll a Story again? Type 'y'

for yes or 'n' for no. ")
184   if play_again == 'y':
185     genre_roll()
186     gen()
187     parts()
188   elif play_again == 'n':
189     print()
190     print("Fare thee well, young writer!")
191     break
192   else:
193     print("Hmm...I did not understand that. Type y for yes or n for no.

")



The first thing we must do is to import two popular Python modules –
time and random (lines 5 and 6 above). Python provides many built-in
modules that provide programmers code libraries. What do you think
time and random do in this program? Try looking it up!

Four very important variables in this game are the Num variables
(genreNum, charNum, setNum and plotNum) (lines 9-12 above). The
program will use random to randomly select a number that is assigned to
a specific genre, character, setting or plot. The game has a replay option
at the end so in order to ensure players get new selections each time
they play, the four number variables must start out as None, which is
Python’s version of Null.

Next your will see a series of functions. You know they are functions
when you see “def” printed in front of a variable with parenthesis and a
colon at the end that looks like this: def function():. There are seven
functions defined in this program. Can you list them all?

Functions are an extremely important concept in Python and save
programmers a lot of time. Functions are a block of reusable code that
will run when called. The first function is named wel() and is located on
line 15. Let’s see how wel() works. Notice line 16 that says global name.
Because the name variable has been defined in the wel() function, and we
want to use it outside of this function, we need to tell Python that it
should work everywhere within the program (global will do this). Next,
the function provides a print statement, introducing players to the game.
Anything within the print statement can be edited! Go ahead and change
my wording but leave the parenthesis and quotation marks as-is! On line
20, you’ll see the name variable being defined using the input function –
did you notice that not only can we programmers create functions but
Python has its own built-in functions? Input is one of them and we will
use it to ask the player their name, which we can reference throughout
the game. On line 21, we are using a Python string formatting method,
.format(). By using the curly brackets {} as placeholders, we can use
.format to pass the name variable to the string. Any name that the user
has typed in will show up in the print statement on line 21!

The next function, genre_roll(), makes use of the random module we
imported! See genre_roll() on line 22. Notice the variable genreNum
equals a number that is produced from the random module and that the
range is between 1-3. Players only have two options for a genre –



Mystery or Horror, so why is the range 1-3? Because when it comes to the
randrange method, Python includes the first number and up to, but not
including, the last number. On line 28 is another important concept in
Python that is a timesaver – a dictionary. Python’s dictionaries pair up
keys and values, like a real dictionary. In this example, key 1’s value is
Mystery and key 2’s value is Horror. We are using random with
genreNum to randomly select genre numbers that are assigned to genre
types. Users will get a random genre selection each time they “roll” the
dice. What other genres could we use in place of Mystery or Horror?

On line 38 of the program, we see the function count(). Count is making
use of the time library that we imported. In the code, you will see the
word time.sleep and then a number in parenthesis. Sleep is a method of
time and actually pauses a program for however many seconds you type
in. How many seconds did I pause the program for? How could you make
it pause even longer?

On line 47 is
the gen()
function and
it makes use
of another
important
programming
concept, If…

Else statements. On line 53, it states if genreNum == 1 then go to
mys_roll(), else go to hor_roll(). Do you remember what number 1 was for
and how we used it in the program? What was the number 2 for?

On line 59 is
the mys_roll()
function and
line 100 is the
hor_roll()
function. By
now, you
have seen all
of the
features of
these



functions
within the
previous
functions,
however
these are
longer and a
little more
complicated.
You’ll see
variables set
as global – do
you
remember
why we do
that?
Random and
randrange
are used

many times for the character, setting and plot variables – you’ll see that
they are used in tandem with the character, setting and plot dictionaries.
Do you remember why that works? If you look at mys_roll() and hor_roll(),
you will notice the code is pretty identical aside from the words found in
the print statements. Those two functions are using the same concepts
to randomly select a character, setting and plot from whatever genre
was randomly selected.

On line 141 is the last function, parts(). Believe it or not, this is the
function that sets up the game. You will see print statements, the count()
function being called, time.sleep() being used, and .format populating
print statements with different variables. You have already seen how all
of this works in the previous code.

Starting on line 164, there are a series of 4 functions being called. What
would happen if we deleted that code or commented it out (by putting
hashtags in front of them)? The answer is…nothing! Remember what
calling functions does – it runs the code found within those functions. If
we delete or comment out any of those four lines, our code that provides
the start of the story wouldn’t run, the random genre selector wouldn’t
select a genre, the code that randomly picks a character, setting and plot



wouldn’t produce selections, and the story that is found in the parts()
function wouldn’t print out! Remember, you can create as many
functions as you’d like but they won’t do anything if you don’t call them!

Last but not least is code that makes it possible for players to replay the
game if they don’t like their randomly selected options. Remember in the
beginning we had to set the four variables to None? This is so once the
player is done with the game, the selections are cleared out and you get
new selections. However, notice the words while True, if, elif and else are
in the code – what are those doing? Those set up a while loop which will
continue to run the functions genre_roll(), gen() and parts() as long as the
user types the letter “y” for yes. If the user types in a ‘n’, the program
prints off a goodbye statement. Do you see what that is? What happens
if the user types in the word “yes” instead of a “y”?

If you are not a fan of mysteries or horror, what could you do to easily edit

the program to give players the chance to roll Science Fiction or Fantasy

characters, settings and plots? What part of the code would you have to

edit?

So, what if we want to add to the “Roll a Story” program and make it more

complex? What could we do to improve this code? There is another

extremely important concept in programming that would make this code

more concise and you could easily add additional story elements to make

the game more robust. That concept is called OOP – Object Oriented

Programming, a type of programming paradigm. The program we created

was an example of a Functional programming paradigm.

In functional programming, the code is split into functions. In effect, the

function of the program is more important than the data. Very often, our

goals as programmers should be to develop concise code divided into

classes and objects that can be reused and easily managed. For example, had



we used classes and objects in this program, it would allow us to skip on all

of the nested if statements (which can become quickly confusing and easy

to make mistakes). Although a little more difficult to create, the program

would be easier to manage in the long run. OOP can also be used in other

popular languages such as JavaScript, Java and C# and should be the next

step in your programming journey.

Learn More

REPL.IT QUICK START GUIDE
https://docs.repl.it/misc/quick-start

ROLL A STORY PROGRAM
https://repl.it/@brivera/rollastory

ROLL A STORY WRITING ACTIVITY
https://www.teacherspayteachers.com/Product/FREE-Roll-a-Story-Writing-

Activity-286634

DIGITAL WRITING ACTIVITY
https://www.thetechieteacher.net/2019/10/roll-story-digital-writing-

activity.html

ROLL A STORY FREEBIE
https://crazyspeechworld.com/2014/06/roll-a-story-freebie.html

ROLL A DICE LITERARY FUN
https://msjordanreads.com/2012/08/11/roll-a-dice-literacy-fun/



ROLL THE DICE
https://repl.it/@amber192/Roll-the-dice#main.py

INTERACTIVE WRITING GAMES
https://classroom.synonym.com/interactive-games-narrative-writing-

6140501.html

ROLL THE DICE WITH PYTHON
https://medium.com/@diskokarl/how-to-roll-dice-with-python-

34865d83f53d

About the Author

Bianca Rivera
Bianca is a school librarian at East Islip School District where she leads a
Technology Club for grades 3-5 students.


